Abstract
目的
探究人工智能术前规划系统(AIHIP 系统)辅助髋关节翻修手术的早期疗效。
方法
回顾分析 2019 年 6月—2023年3月收治且符合选择标准的22例(23髋)髋关节翻修患者临床资料。其中男12例,女10例;年龄 44~90岁,平均 69.7 岁。初次翻修19髋,2次翻修3髋,3次翻修1髋。翻修原因:假体松动12髋,髋臼杯松动4髋,骨溶解3髋,髋臼脱位2髋,术后感染1髋,假体磨损1髋。Paprosky髋臼骨缺损分期:ⅡA期6髋,ⅡB期9髋,ⅡC期4髋,ⅢA期3髋,ⅢB期1髋。记录患者更换假体型号、手术时间、住院时间、下地情况等,以及术后感染、骨折、假体松动等不良事件发生情况。术前、术后1周及6个月采用 Harris评分评价患肢功能,比较术前及术后6个月髋关节活动度。
结果
患者手术时间 85~510 min,平均 241.8 min;住院时间 7~35 d,平均 15.2 d;脱离助行器时间 2~108 d,平均42.2 d。22例患者均获随访,随访时间8~53个月,平均21.7个月。除1例患者术后出现大腿血肿、1髋发生髋关节脱位外,余患者均无假体松动、感染等不良事件发生。术后髋臼杯型号匹配程度为完全匹配22髋,不匹配1髋(+2号),匹配率95.65%;股骨柄型号匹配程度为完全匹配22例髋、一般匹配1髋(–1号),匹配率100%。术后1周及6个月 Harris 评分分别为(55.3±9.8)分和(89.6±7.2)分,较术前(33.0±8.6)分显著改善(P<0.05),术后6个月较1周时进一步改善(P<0.05);术后6个月根据Harris 评分评价患者髋关节功能,获良21髋、中2髋,可满足日常生活需求。术后6个月髋关节活动度为(111.09±10.11)°,与术前(79.13±18.50)° 比较差异有统计学意义(t=−7.269,P<0.001)。
结论
AIHIP 系统辅助治疗THA术后翻修患者,可提升翻修手术的精准性,降低手术难度,患者术后恢复效果好,早期疗效满意。
Keywords: 人工智能, 术前规划, 人工全髋关节置换术, 翻修手术
Abstract
Objective
To explore the short-term effectiveness of hip revision surgery guided by artificial intelligence preoperative planning (AIHIP) system.
Methods
The clinical data of 22 patients (23 hips) who were admitted between June 2019 and March 2023 and met the selection criteria were retrospectively analyzed. There were 12 males and 10 females with an average age of 69.7 years (range, 44-90 years). There were 19 hips in the first revision, 3 hips in the second revision, and 1 hip in the third revision. The causes of revision included 12 hips with prosthesis loosening, 4 hips with acetabular cup loosening, 3 hips with osteolysis, 2 hips with acetabular dislocation, 1 hip with postoperative infection, and 1 hip with prosthesis wear. There were 6 hips in stage ⅡA, 9 hips in stage ⅡB, 4 hips in stage ⅡC, 3 hips in stage ⅢA, and 1 hip in stage ⅢB according to Paprosky staging of acetabular bone defect. The replacement of prosthesis type, operation time, hospitalization stay, ground active condition, and postoperative infection, fracture, prosthesis loosening, and other adverse events were recorded. The function of the affected limb was evaluated by Harris score before operation, at 1 week and 6 months after operation, and the range of motion of the hip joint was compared before operation and at 6 months after operation.
Results
The operation time was 85-510 minutes, with an average of 241.8 minutes; the hospitalization stay was 7-35 days, with an average of 15.2 days; the time of disassociation from the walker was 2-108 days, with an average of 42.2 days. All the 22 patients were followed up 8-53 months (mean, 21.7 months). No adverse events such as prosthesis loosening or infection occurred in the rest of the patients, except for postoperative hematoma of the thigh in 1 patient and dislocation of the hip in 1 hip. The matching degree of acetabular cup was completely matched in 22 hips and mismatched in 1 hip (+2), the matching rate was 95.65%. The matching degree of femoral stem was completely matched in 22 hips and generally matched in 1 hip (−1), and the matching rate was 100%. The Harris scores were 55.3±9.8 and 89.6±7.2 at 1 week and 6 months after operation, respectively, which significantly improved when compared with before operation (33.0±8.6, P<0.05), and further improved at 6 months after operation than at 1 week after operation (P<0.05). The function of hip joint was evaluated by Harris score at 6 months after operation, and 21 hips were good and 2 hips were moderate, which could meet the needs of daily life. The range of motion of hip joint was (111.09±10.11)° at 6 months after operation, which was significantly different from (79.13±18.50)° before operation (t=−7.269, P<0.001).
Conclusion
AIHIP system can improve the accuracy of revision surgery, reduce the difficulty of surgery, and achieve good postoperative recovery and satisfactory short-term effectiveness.
Keywords: Artificial intelligence, preoperative planning, total hip arthroplasty, revision surgery
目前,人工全髋关节置换术(total hip arthroplasty,THA)已广泛应用于临床治疗髋关节发育不良、股骨头坏死、髋关节骨关节炎等疾病,随着人工髋关节使用时间延长,关节假体出现无菌性松动、断裂、周围骨溶解、无菌性感染甚至脱位,需行髋关节翻修手术的患者正逐年增加[1-3]。髋关节翻修手术是改善THA术后患者生活质量的有效方法[4]。虽然髋关节假体材料及结构不断改进、外科技术不断提高,THA手术成功率越来越高,但因假体无菌性松动引起的手术失败仍是行髋关节翻修手术的主要原因之一[5-9]。在髋关节翻修手术中,骨缺损处理、假体位置选择等是决定手术成功与否的关键[10], THA手术失败常导致髋臼出现巨大骨缺损,极大增加了髋关节翻修手术难度;术中清除残留骨水泥或拔出固定的假体柄,极易造成进一步骨缺损或骨折,从而影响术后疗效。因此,行髋关节翻修手术前需进行严格的术前规划。
目前,多数医院仍使用传统二维或三维术前规划软件,但存在仍需手动分割测量、耗时久等问题,难以满足临床手术需求[11-13]。人工智能(artificial intelligence,AI)是新兴技术,AI在辅助THA手术方面已初见成效[14-16]。现回顾分析2019 年 6月—2023年3月南京中医药大学附属医院收治且使用AI术前规划系统(AIHIP 系统;北京长木谷医疗科技有限公司)进行术前规划的髋关节翻修手术患者临床资料,探究该系统的临床价值。报告如下。
1. 临床资料
1.1. 患者选择标准
纳入标准:① THA术后发生假体松动、断裂、无菌性感染甚至脱位等导致手术失败;② 进行性骨丢失患者;③ 年龄≥40岁;④ 术前影像学资料符合AIHIP系统选择标准(有髋关节正侧位X线片及扫描至整个骨盆及股骨小转子下15 cm的髋关节CT);⑤ 随访时间≥6个月且资料完整。
排除标准:① 合并凝血功能障碍等手术禁忌证,无法完成手术;② 髋关节或周围骨质疏松严重,或存在神经肌肉功能障碍;③ 髋关节或体内存在活动性感染病灶;④ 采用 AIHIP 系统术前规划后未行手术。2019 年 6月—2023年3月共22例(23髋)患者符合选择标准纳入研究。
1.2. 一般资料
本组男12例,女10例;年龄 44~90岁,平均 69.7 岁。左侧9髋,右侧14髋。初次翻修19髋,2次翻修3髋,3次翻修1髋。翻修原因:假体松动12髋,髋臼杯松动4髋,骨溶解3髋,髋臼脱位2髋,术后感染1髋,假体磨损1髋。除1例患者脊柱强直伴脊柱弧度异常,其余患者脊柱弧度均正常,无脊柱强直。患侧髋关节撞击试验均为阳性,Trendelenburg 征阳性15髋、阴性8髋。Paprosky髋臼骨缺损分期:ⅡA期6髋,ⅡB期9髋,ⅡC期4髋,ⅢA期3髋,ⅢB期1髋。
1.3. 术前规划
① 术前准备患者骨盆正位X线片及髋关节256排CT平扫图像,要求扫描至整个骨盆及股骨小转子下15 cm,CT扫描层厚0.8 mm。② 将扫描数据以Dicom格式导入AIHIP软件,通过Transformer_unet算法完成髋关节三维重建。③ 通过AIHIP系统智能规划股骨侧及髋臼侧,并以髋臼外展40°、前倾20° 角度安放髋臼杯假体,再根据重建模型选择合适的球头,完成模拟假体安放。④ 通过智能模拟截骨,测量股骨距保留长度及大转子尖部至股骨柄肩部的距离,最后输出智能规划结果,模拟术后效果。AIHIP系统术前规划时间约5 min。见图1。
图 1.
Preoperative planning of AIHIP system
AIHIP系统术前规划
a. AI计算髋臼杯放置位置;b~e. 髋臼侧细节;f. 模拟术后前侧三维视图;g. 模拟术后后侧三维视图;h. 模拟术后整体三维视图;i. 模拟术后髋关节正位X线片
a. AI calculation of acetabular cup placement; b-e. Details of the acetabular side; f. Simulated postoperative anterior three-dimensional view; g. Simulated postoperative posterior three-dimensional view; h. Simulated postoperative overall three-dimensional view; i. Simulated postoperative anteroposterior X-ray film of hip joint
Open in a new tab1.4. 手术方法
手术均采用常规后外侧入路,切除关节周围坏死组织,脱位髋关节。根据患者具体情况取出相应假体,清除骨端残留骨水泥及增生组织,原假体松动部位更换合适型号规划假体。术中根据髋臼骨缺损情况,植入适量直径约5 mm的同种异体颗粒骨(商品名:拜欧金;北京科健生物技术有限公司)或金属垫块等填充物。本组采取ABC方案(由轻到重)进行翻修手术:① A方案:金属骨小梁髋臼/多孔杯+颗粒植骨+必要时金属垫块;本组21髋。② B方案:颗粒植骨+骨水泥聚乙烯内衬+金属加强环 [杯-笼(Cup-Cage)技术];本组1髋。③ C方案:3D打印定制髋臼假体+颗粒植骨;本组1髋。对于股骨侧假体的处理,采用北京春立正达医疗器械股份有限公司的160长柄(3髋)或美国强生公司的Solution长柄(6髋)翻修。在松解股骨柄或植入股骨柄假体的过程中,极易造成股骨近端骨折,术中采取胸骨钢丝捆扎固定。本组单纯更换髋臼内衬及股骨头5髋,更换髋臼杯、内衬及人工股骨头9髋,单纯更换股骨柄及股骨头4髋,髋臼及股骨柄假体全翻修5髋。
1.5. 围术期管理
术后24 h内密切监测患者生命体征,观察患者意识恢复情况、双下肢感觉及运动情况等,并予以抗感染、抗凝、护胃、化痰、消炎、镇痛、抗骨质疏松等治疗。术后1~3 d嘱患者行股内侧肌收缩及足背伸、跖屈活动,每次坚持5 s再放松,20~30次/组、3~4组/d。单纯髋臼侧翻修者中,只更换人工股骨头或者髋臼杯内衬者,嘱患者在床边做抬腿训练,并根据患者情况逐步进行下床步行训练,直至患者可脱离助行器负重行走;股骨侧及髋臼侧假体全翻修者以床边锻炼为主,待卧床满3个月再逐渐下床行走。
1.6. 疗效观测指标
记录患者更换假体型号、手术时间、住院时间、下地情况等,以及术后感染、骨折、假体松动等不良事件发生情况。术前、术后1周及6个月采用 Harris评分评价患肢功能;比较术前及术后6个月髋关节活动度。其中假体匹配情况:术后假体型号与术前设计完全相同为完全匹配,手术前后假体型号相差1号为一般匹配,手术前后假体型号相差2号或以上为不匹配[15]。假体位置:术后复查髋关节正位X线片并测量假体位置,股骨假体在内翻3°~外翻3° 之间,可判定假体位于中心固定;髋臼假体外展角处于30°~50°、前倾角 5°~25° 之间,可认为髋臼假体处于安全范围[17-18]。
1.7. 统计学方法
采用SPSS25.0统计软件进行分析。计量资料经Shapiro-Wilk检验,均符合正态分布,数据以均数±标准差表示;手术前后髋关节活动度比较采用配对t检验;Harris 评分比较采用单因素重复测量方差分析,若不满足球形检验,采用Greenhouse-Geisser法进行校正,不同时间点间比较采用Bonferroni法;检验标准α=0.05。
2. 结果
本组手术时间 85~510 min,平均 241.8 min;住院时间 7~35 d,平均 15.2 d;脱离助行器时间 2~108 d,平均42.2 d。22例患者均获随访,随访时间8~53个月,平均21.7个月。除1例患者术后出现大腿血肿、1髋发生髋关节脱位外,余患者均无假体松动、感染等不良事件发生。术后髋臼杯型号匹配程度为完全匹配22髋,不匹配1髋(+2号),匹配率95.65%;股骨柄型号匹配程度为完全匹配22髋、一般匹配1髋(–1号),匹配率100%。术后1周及6个月 Harris 评分分别为(55.3±9.8)分和(89.6±7.2)分,较术前(33.0±8.6)分显著改善,术后6个月较1周时进一步改善,差异均有统计学意义(P<0.05);术后6个月根据Harris 评分评价患者髋关节功能,获良21髋、中2髋,可满足日常生活需求。术后6个月髋关节活动度为(111.09±10.11)°,与术前(79.13±18.50)° 比较差异有统计学意义(t=−7.269,P<0.001)。见图2、3。
图 2.
A 54-year-old male patient with bone defect (Paprosky stageⅡB ) of right hip underwent all hip joint revision
患者,男,54岁,右髋Paprosky ⅡB期骨缺损,髋关节假体全翻修
a. 术前髋关节正位X线片;b. 术中经后外侧入路暴露关节内部;c. 术中植骨;d. 术中植柄过程中出现股骨近端骨折,透视下予以钢丝加压固定;e. 透视下股骨近端情况;f、g. 术后2 d髋关节正侧位X线片示假体位置良好,内固定物无松动
a. Preoperative anteroposterior X-ray film of hip joint; b. The interior of the joint was exposed via posterolateral approach; c. Bone grafting; d. Proximal femoral fracture occurred during the placement of the femoral stem, and was fixed with wire compression under fluoroscopy; e. Fluoroscopy of proximal femur; f, g. Anteroposterior and lateral X-ray films of the hip joint at 2 days after operation showed that the position of the prosthesis was good, and there was no loosening of the internal fixator
Open in a new tab图 3.
Anteroposterior and lateral X-ray films of a 73-year-old male patient with bone defect (Paprosky stage ⅡC) of left hip underwent all hip joint revision
患者,男,73岁,左髋Paprosky ⅡC期骨缺损,髋关节假体全翻修正侧位X线片
a. 术前;b. 术后2 d假体位置良好,内固定物无松动
a. Preoperative view; b. The views at 2 days after operation showed that the position of the prosthesis was good, and there was no loosening of the internal fixator
Open in a new tab3. 讨论
AIHIP系统在THA术前规划中已展现出巨大优势,国内越来越多医院采用AI辅助THA术前规划。通过本研究分析AIHIP系统辅助THA术后髋关节翻修手术的疗效,我们总结该系统优点如下:第一,AIHIP 系统可以提高术前规划的精准性。AIHIP 系统采用独特的Transformer_unet算法,可在短时间内实现翻修髋关节CT图像的自动、精准分割,提升临床效率,具有较高实用性和临床应用价值[19-20]。研究发现,与传统二维及三维规划相比,使用AIHIP系统进行术前规划,术前X线片测量放大率更准确,测量角度差异性更小,假体型号更精确,操作更简便,从而提高了手术疗效[21-23]。第二,AIHIP系统可降低术中出错率。使用AIHIP系统三维设计股骨侧假体型号,可很大程度规避传统术前二维设计中的手动测量、耗时长等问题,提高临床疗效,降低术后翻修率。本研究纳入的髋关节翻修患者髋臼侧骨缺损多数为Paprosky Ⅱ、Ⅲ期缺损,往往因残留骨量少、骨质差、骨质与髋臼杯的接触面积小等原因,致使髋臼杯假体支撑点不吻合而增加手术失败风险。术中髋臼打磨较浅,髋臼杯安置不稳,术后假体易松动;术中髋臼打磨较深,则容易打穿髋臼后壁,直接导致髋关节翻修手术失败[24]。面对复杂的翻修手术,采用AIHIP系统行术前规划可以完成运动范围模拟,从而优化髋臼杯放置位置,预防撞击、髋臼杯假体移位、术后大量骨缺损及螺钉失效等问题,减少术后并发症的发生[25-26]。第三,AIHIP系统可提高手术效率。使用AIHIP系统进行术前规划,只需事前准备好相应影像学资料并扫描成CT数据,然后将这些数据以Dicom格式导入,AIHIP系统即可自动完成髋关节三维重建。本研究显示,AIHIP系统术前规划时间约5 min,精准迅速,提高了临床效率。
但AIHIP系统仍有局限性:第一,AI术前规划技术尚不成熟,对于严重髋臼侧缺损,不能很好地完成规划。AIHIP系统目前无法设计多垫块、加强环、定制假体或定制加强环等方案,而需要行翻修手术患者情况通常较复杂,需要更多翻修方案。第二,AI术前规划技术尚未与临床完全契合。如AI设计多孔垫块,其尺寸有时无法与术中实际完美匹配,可能会影响手术顺利进行;且即使术前已模拟好垫块安装位置及角度,术中仍需多次试模,以达到最大适配程度。第三,AI术前规划技术难以估测软组织情况、具体入路及术中假体处理,仍需经验丰富的术者完成。此外,Huo等[26]研究发现,在面对髋关节高度发育不良情况下,AI术前规划系统可能产生较大误差。
对于骨缺损的处理,选择合适假体是髋关节翻修手术成功的关键[27]。Paprosky ⅡA期和ⅡB期缺损多因髋臼前上方骨质流失,髋臼杯向前上方或外侧移位,通常无需额外填充同种异体移植物[28];Ⅲ期缺损除需要同种异体移植物填充外,还需要借助CT三维重建及3D打印技术,设计出最能匹配盆腔及周围器官的假体植入方案,我们多采取Cup-Cage技术或3D打印设计个性化假体植入[29-33],以促进髋臼假体稳定。打压植骨技术可简单有效处理髋臼非结构性骨缺损[34],对于严重结构性骨缺损,则需要采用定制假体。
综上述,AIHIP 系统用于辅助THA患者翻修术前设计,具有较高精准性,可降低手术难度,促进患者恢复。但本研究仍存在局限性:① 受限于成人 Paprosky ⅡA期~Ⅲ期骨缺损,术后需行翻修手术治疗的患者相对较少,因此本研究病例数较少;② 患者随访时间有限,远期疗效需进一步随访明确;③ 翻修患者个体差异较大,翻修方案不一。
作为基于影像数据系统的关节外科机器人系统,AIHIP系统属于为数不多真正服务于临床的骨科手术机器人之一[35],但其用于医学影像的处理还存在很多挑战,如目标边界模糊和缺失的影像分割问题、深度学习的理论问题等。AIHIP系统如何进一步发展以获得更高的学术接受度及临床实用价值,是未来努力方向[36-37]。我们认为,依靠AIHIP系统行术前规划,可促进术者更加微创、智能、安全、精准地开展此类复杂、高难度髋关节手术,如何进一步完善AIHIP 系统处理诸如软组织分割、髋关节发育不良设计等方面的能力,值得进一步探讨。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突
伦理声明 研究方案经南京中医药大学附属医院医学伦理委员会批准(2020NL-134-02);患者均知情同意
作者贡献声明 朱家庆、夏天卫、张超:参与手术、资料收集、论文撰写及修改;张驰宇、孙家豪、马博闻、刘金柱:参与手术、资料收集、统计分析;沈计荣:研究指导、手术操作、论文修改及审定
Contributor Information
天卫 夏 (Tianwei XIA), Email: 1263638610@qq.com.
计荣 沈 (Jirong SHEN), Email: joint66118@sina.com.
References
1.Deirmengian GK, Zmistowski B, O’Neil JT, et al Management of acetabular bone loss in revision total hip arthroplasty. J Bone Joint Surg (Am) 2011;93(19):1842–1852. doi: 10.2106/JBJS.J.01197. [DOI] [PubMed] [Google Scholar]
2.边焱焱, 程开源, 常晓, 等 2011至2019年中国人工髋膝关节置换手术量的初步统计与分析. 中华骨科杂志. 2020;40(21):1453–1460. [Google Scholar]
3.Bozic KJ, Kurtz SM, Lau E, et al The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg (Am) 2009;91(1):128–133. doi: 10.2106/JBJS.H.00155. [DOI] [PubMed] [Google Scholar]
4.刘珂, 刘晓潭, 侯毅, 等 3D打印个体化髋臼填充技术在复杂髋关节翻修中的应用. 中华实验外科杂志. 2017;34(3):522–523. [Google Scholar]
5.赵玉峰, 王爱民, 孙红振, 等 人工全髋关节置换术后感染翻修30例. 中华创伤杂志. 2006;22(11):815–819. [Google Scholar]
6.Mouchti S, Whitehouse MR, Sayers A, et al The association of body mass index with risk of long-term revision and 90-day mortality following primary total hip replacement: Findings from the national joint registry for england, wales, northern ireland and the isle of man. J Bone Joint Surg (Am) 2018;100(24):2140–2152. doi: 10.2106/JBJS.18.00120. [DOI] [PubMed] [Google Scholar]
7.杨泊宁, 陈骁, 代志鹏, 等 部分旷置二期翻修术治疗人工髋关节假体周围感染. 中国骨与关节损伤杂志. 2019;34(12):1271–1273. [Google Scholar]
8.Ullmark G The unstable total hip arthroplasty. EFORT Open Rev. 2017;1(4):83–88. doi: 10.1302/2058-5241.1.000022. [DOI] [PMC free article] [PubMed] [Google Scholar]
9.Di Martino A, Castagnini F, Stefanini N, et al Survival rates and reasons for revision of different stem designs in total hip arthroplasty for developmental dysplasia: a regional registry study. J Orthop Traumatol. 2021;22(1):29. doi: 10.1186/s10195-021-00590-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
10.Ehlinger M, Delaunay C, Karoubi M, et al Revision of primary total hip arthroplasty for peri-prosthetic fracture: A prospective epidemiological study of 249 consecutive cases in France. Orthop Traumatol Surg Res. 2014;100(6):657–662. doi: 10.1016/j.otsr.2014.03.030. [DOI] [PubMed] [Google Scholar]
11.杨滨, 张克, 袁亮, 等 三维术前规划在全髋关节置换术中的应用. 中国矫形外科杂志. 2022;30(7):653–656. [Google Scholar]
12.Wu D, Zhi X, Liu X, et al Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty. J Orthop Surg Res. 2022;17(1):164. doi: 10.1186/s13018-022-02932-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
13.霍佳邦, 赵畅, 黄广鑫, 等 CT数据三维规划预测全髋关节置换假体型号及截骨的准确性与可复性. 中国组织工程研究. 2021;25(27):4294–4299. [Google Scholar]
14.张先龙, 王坤正 关节外科的未来——数字骨科技术在关节外科的应用. 中华骨科杂志. 2021;41(8):525–531. [Google Scholar]
15.吴东, 柴伟, 刘星宇, 等 人工智能全髋关节置换术髋臼杯放置算法的实验研究. 中华骨科杂志. 2021;41(3):176–185. [Google Scholar]
16.宋平, 吴东, 刘星宇, 等 一例人工智能三维规划系统辅助全膝关节置换术. 骨科. 2021;12(3):281–283. [Google Scholar]
17.Nakata K, Nishikawa M, Yamamoto K, et al A clinical comparative study of the direct anterior with mini-posterior approach: two consecutive series. J Arthroplasty. 2009;24(5):698–704. doi: 10.1016/j.arth.2008.04.012. [DOI] [PubMed] [Google Scholar]
18.Pradhan R Planar anteversion of the acetabular cup as determined from plain anteroposterior radiographs. J Bone Joint Surg (Br) 1999;81(3):431–435. doi: 10.1302/0301-620X.81B3.0810431. [DOI] [PubMed] [Google Scholar]
19.夏天卫, 刘星宇, 刘金柱, 等. 人工智能术前规划系统辅助人工全髋关节置换术治疗成人Crowe Ⅳ型先天性髋关节发育不良的疗效研究. 中国修复重建外科杂志, 2021, 35(10): 1265-1272.
20.吴东, 孔祥朋, 杨敏之, 等 深度学习卷积神经网络在髋关节翻修术前CT分割领域的研发与初步应用. 中华骨科杂志. 2023;43(1):62–71. [Google Scholar]
21.Archibeck MJ, Cummins T, Tripuraneni KR, et al Inaccuracies in the use of magnification markers in digital hip radiographs. Clin Orthop Relat Res. 2016;474(8):1812–1817. doi: 10.1007/s11999-016-4704-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
22.Weber M, Woerner ML, Springorum HR, et al Plain radiographs fail to reflect femoral offset in total hip arthroplasty. J Arthroplasty. 2014;29(8):1661–1665. doi: 10.1016/j.arth.2014.03.023. [DOI] [PubMed] [Google Scholar]
23.Tsai TY, Dimitriou D, Li G, et al Does total hip arthroplasty restore native hip anatomy? Three-dimensional reconstruction analysis. Int Orthop. 2014;38(8):1577–1583. doi: 10.1007/s00264-014-2401-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
24.Odri GA, Padiolleau GB, Gouin FT Oversized cups as a major risk factor of postoperative pain after total hip arthroplasty. J Arthroplasty. 2014;29(4):753–756. doi: 10.1016/j.arth.2013.07.001. [DOI] [PubMed] [Google Scholar]
25.Streit MR, Innmann MM, Merle C, et al Long-term (20- to 25-year) results of an uncemented tapered titanium femoral component and factors affecting survivorship. Clin Orthop Relat Res. 2013;471(10):3262–3269. doi: 10.1007/s11999-013-3033-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
26.Huo J, Huang G, Han D, et al Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology. J Orthop Surg Res. 2021;16(1):156. doi: 10.1186/s13018-021-02294-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
27.沈俊民, 周勇刚, 孙菁阳, 等 Crowe Ⅳ型髋关节发育不良人工全髋关节置换术后翻修原因及假体选择的研究. 中国修复重建外科杂志. 2020;34(5):557–562. [Google Scholar]
28.Fryhofer GW, Ramesh S, Sheth NP Acetabular reconstruction in revision total hip arthroplasty. J Clin Orthop Trauma. 2020;11(1):22–28. doi: 10.1016/j.jcot.2019.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
29.Wang J, Min L, Lu M, et al. What are the complications of three-dimensionally printed, custom-made, integrative hemipelvic endoprostheses in patients with primary malignancies involving the acetabulum, and what is the function of these patients? Clin Orthop Relat Res, 2020, 478(11): 2487-2501.
30.Kavalerskiy GM, Murylev VY, Rukin YA, et al Three-dimensional models in planning of revision hip arthroplasty with complex acetabular defects. Indian J Orthop. 2018;52(6):625–630. doi: 10.4103/ortho.IJOrtho_556_16. [DOI] [PMC free article] [PubMed] [Google Scholar]
31.Yao A, George DM, Ranawat V, et al 3D printed acetabular components for complex revision arthroplasty. Indian J Orthop. 2021;55(3):786–792. doi: 10.1007/s43465-020-00317-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
32.Zhang Y, Gao Z, Zhang B, et al The application of custom-made 3D-printed titanium augments designed through surgical simulation for severe bone defects in complex revision total hip arthroplasty. J Orthop Traumatol. 2022;23(1):37. doi: 10.1186/s10195-022-00656-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
33.环大维, 夏天卫, 刘金柱, 等 直接前方入路全髋关节置换术中髋臼骨折1例并文献复习. 现代医药卫生. 2022;38(9):1611–1614. [Google Scholar]
34.Wimmer MD, Randau TM, Deml MC, et al Impaction grafting in the femur in cementless modular revision total hip arthroplasty: a descriptive outcome analysis of 243 cases with the MRP-TITAN revision implant. BMC Musculoskelet Disord. 2013;14:19. doi: 10.1186/1471-2474-14-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
35.徐溢明, 赵天昊, 翁习生 机器人辅助髋膝关节置换术发展现状. 中华骨与关节外科杂志. 2022;15(8):633–640. [Google Scholar]
36.Riskin DJ, Longaker MT, Gertner M, et al Innovation in surgery: a historical perspective. Ann Surg. 2006;244(5):686–693. doi: 10.1097/01.sla.0000242706.91771.ce. [DOI] [PMC free article] [PubMed] [Google Scholar]
37.Schnurman Z, Kondziolka D. Evaluating innovation. Part 1: The concept of progressive scholarly acceptance. J Neurosurg, 2016, 124(1): 207-211.